MINI-REVIEW

Lipoxins: Eicosanoids Carrying Intraand Intercellular Messages

Charles N. Serhan¹

Received November 27, 1989

Abstract

The lipoxins are a recent addition to the family of biologically active products derived from arachidonic acid. Compounds of this series contain a conjugated tetraene structure and can be generated by the actions of the major lipoxygenases of human tissues (5-, 12-, and 15-LO's). Biosynthesis of the lipoxins from cellular sources of unesterified arachidonic acid is triggered by the initial actions of either the 15-LO or 5-LO followed by additional reactions. Recent results indicate that lipoxins are also generated by receptor-mediated events during cell-cell interactions with the transcellular metabolism of key intermediates. Lipoxin A_4 and lipoxin B_4 each possess a unique spectrum of biological activities unlike those of other eicosanoids in both in vivo and in vitro systems. Lipoxin A4 stimulates changes in the microvasculature and can block some of the proinflammatory effects of leukotrienes (in vivo). Lipoxin A_4 and lipoxin B_4 both inhibit natural killer cells (*in vitro*), and lipoxin B_4 displays selective actions on hematopoietic cells. The finding that lipoxin A_4 activates isolated protein kinase C suggests that it may also serve an intracellular role in its cell of origin before it is released to the extracellular milieu. Thus, cell-cell interactions, along with multiple oxygenations by lipoxygenases, generate compounds that can regulate cellular responses by serving as both intra- and intercellular messages.

Key Words: Arachidonic acid; lipoxygenases; blood cells; signal transduction.

¹Hematology Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115.

Introduction

Signal transduction in a variety of cell types is associated with the release and oxygenation of arachidonic acid by lipoxygenases (LO's).² LO's, which are widely distributed in human tissues, transform nonesterified arachidonic acid to biologically active products that may play roles in both normal and pathophysiologic processes (Samuelsson, 1983). In humans, the three major LO's (5-, 15-, and 12-LO) are compartmentalized within different cell types of peripheral blood. For example, upon stimulation, human platelets activate an arachidonate 12-LO, while human neutrophils (PMN) possess both 5- and 15-LO's (Borgeat *et al.*, 1983). Initial oxygenation of arachidonic acid via 5-LO is a key event in the biosynthesis of leukotrienes, which are held to play

Fig. 1. Biosynthesis of lipoxins by activated human leukocytes (transformation of 15-HETE; see text for details).

²Abbreviations used: RP-HPLC, reverse-phase HPLC; GC, gas-liquid chromatography; MS, mass spectrometry; Me₃Si, trimethylsilyl; lipoxin A₄, (LXA₄), 5S,6R,15S-trihydroxy-7,9,13-*trans*-11-*cis*-eicosatetraenoic acid; lipoxin B₄, (LXB₄), 5S,14R,15S-trihydroxy-6,10,12*trans*-8-*cis*-eicosatetraenoic acid; 7-*cis*-11-*trans*-LXA₄, 5S,6R,15S-trihydroxy-9,11,13-*trans*-7*cis*-eicosatetraenoic acid; LTB₄, leukotriene B₄, 5S,12R-dihydroxy-6,14-*cis*-8,10-*trans*-dihydroxyeicosatetraenoic acid; LTB₄, leukotriene A₄, 5S-trans-5,6-oxido-7,9-*trans*-11,14-*cis*-eicosatetraenoic acid; 12-HETE, 12S-hydroxy-58,14-*cis*-10-*trans*-eicosatetraenoic acid; 15-HETE, 15Shydroxy-5,8,11-*cis*-13-*trans*-eicosatetraenoic acid; HPETE, hydroperoxyeicosatetraenoic acid; LO, lipoxygenase; FMLP, formyl-methionyl-leucyl-phenylalanine.

important roles in both inflammation and allergic reactions (reviewed in Samuelsson and Serhan, 1987). In view of the potential importance of LO products, studies were initiated to examine the consequences of initial lipoxygenation at carbon-15 of arachidonic acid as well as to investigate interactions between the major LO pathways (Serhan *et al.*, 1984a,b), since the roles of these other LO's in human tissues are not well understood. These studies led to the identification of a new series of biologically active eicosanoids termed lipoxins (Fig. 1). The interactions observed between peripheral blood cells may serve as models for metabolic events in human tissues. This minireview summarizes the isolation and biosynthesis of the lipoxins as well as reviews recent results from several laboratories concerning their formation and biological activities.

Isolation and Biosynthesis of the Lipoxins

While studying the metabolism of [1-14C]arachidonate (in vitro) with suspensions of mixed leukocytes (i.e., neutrophils, eosinophils, basophils, etc.) obtained from peripheral blood of human donors, we found that labeled C20:4 was transformed and associated with polar compounds that had not been previously described. Since human leukocytes rapidly oxygenate exogenous C20: 4 (without addition of other stimuli, i.e., A23187) at the C-15 position (Borgeat et al., 1983; Serhan et al., 1984c), we studied the products associated with 15-lipoxygenation. Results from several laboratories suggest that initial lipoxygenation at carbon-15 can lead to the formation of eicosanoids of biological interest (Hamberg et al., 1980; Murray et al., 1986; and reviewed in Needleman et al., 1986). 15S-Hydroxy-5,8,11,-cis-13-transeicosatetraenoic acid (15-HETE), for example, had been identified as a major product of C20: 4 in both normal and asthmatic human lung tissue (Hamberg et al., 1980). 15-HETE is also found in microgram quantities in bronchoalveolar lavage fluids obtained from patients with chronic stable asthma following antigenic challenge (Murray et al., 1986). Although 15-lipoxygenation of C20:4 is a major route of its transformation in a wide range of mammalian tissues (reviewed in Needleman et al., 1986), receptor-mediated activation of this enzyme system and general physiological role of its products has remained an area of interest.

To mimic cellular events that could have given rise to the novel polar compounds, as well as to prepare large amounts of these materials for further studies, 15-HPETE and 15-HETE were prepared and the products formed upon their exposure to human leukocytes were studied (Serhan *et al.*, 1984a,b, 1985, 1986a,b). This approach revealed a new series of oxygenated products of C20:4 that contain a unique conjugated tetraene. Since both of these

compounds can arise via the interaction(s) between LO pathways (Fig. 1) and proved to display novel biological properties, the trivial name lipoxins (lipoxygenase interaction products) was introduced (Serhan *et al.*, 1984b, 1987a).

Activation of human leukocytes with an ionophore of divalent cations (A23187) led to increased formation of these tetraene-containing eicosanoids, which facilitated their isolation (Serhan et al., 1984a, 1986a,b). A fraction containing several of the compounds was obtained from incubations with leukocytes following silicic acid chromatography and thin-layer chromatography of material, which had been treated with diazomethane. The basic structures of the first two members of this series were determined by physical methods that included HPLC, UV spectroscopy, gas chromatography-mass spectrometry (GC-MS) and oxidative ozonolysis. One compound was identified as 5,6,15L-trihydroxy-7,9,11,13-eicosatetraenoic acid (Serhan et al., 1984a), and the other proved to be its positional isomer 5D,14,15-trihydroxy-6.8.10.12-eicosatetraenoic acid (Serhan et al., 1984b). When these biologically derived products were isolated following HPLC and added to either human neutrophils, natural killer (NK) cells, or guinea pig lung strips, they elicited bioactions different from those previously observed with other eicosanoids. Therefore the new bioactive compounds were termed lipoxin A_4 (LXA₄) and lipoxin B_4 (LXB₄), respectively (Ramstedt *et al.*, 1985; Serhan *et al.*, 1984b, 1985).

We next determined the complete stereochemistry and identified a route of biosynthesis for the biologically active LXA₄ and LXB₄, as well as identified the structures and actions of their naturally occurring isomers. Results from isotopic oxygen studies guided these experiments, since they revealed that each of the tetraene-containing compounds generated by intact leukocytes carried an ¹⁸O atom at C-5 and that the oxygen atoms at either C-6 of LXA₄ or C-14 of LXB₄, as well as their isomers, were not exclusively derived from molecular oxygen (Serhan *et al.*, 1985). These findings and results of alcohol trapping studies suggested that the formation of lipoxins in human leukocytes proceeds via an epoxide-containing intermediate (Puustinen *et al.*, 1986; Serhan *et al.*, 1986a,b).

At this stage, a synthetic approach was undertaken to establish the stereochemistry of LXA_4 and LXB_4 (i.e., geometry of the double bonds and the chirality of the carbon-6 and carbon-14 position alcohol groups; cf. Serhan *et al.*, 1984a,b). Several criteria and matching studies were employed with materials prepared by total synthesis. Synthetic and biologically derived materials were subject to analysis by UV spectroscopy, HPLC (co-chromatography in several systems), and GC-MS of several derivatives, and, most critically, they were assessed for biological activities in experiments performed in parallel. The complete structure of LXB_4 proved to be 5S, 14R, 15S-trihydroxy-6, 10, 12-*trans*-8-*cis*-eicosatetraenoic acid (Serhan *et al.*, 1986a),

and LXA₄ is 5S,6R,15S-trihydroxy-7,9,13-*trans*-11-*cis*-eicosatetraenoic acid (Serhan *et al.*, 1986b). A 6S isomer of LXA₄ (6S-LXA₄) and two *all-trans* epimers (6S-11-*trans*-LXA₄ and 11-*trans*-LXA₄) were also identified. However, these compounds have proven to be substantially less active than native LXA₄ in several bioassay systems (see Tables III–V). Synthetic approaches coupled with matching analyses performed with HPLC alone were attempted by others (Adams *et al.*, 1985; Fitzsimmons *et al.*, 1985).

Although it is clear that multiple biosynthetic routes as well as cell-cell interactions can lead to formation of tetraene-containing eicosanoids, the finding that 15-HETE is rapidly transformed by activated leukocytes provided a model for studying one pathway in their formation (Serhan et al., 1986a,b). In this route, schematically summarized in Fig. 1, 15-HETE is converted to 5(S)-hydroperoxy-15(S)-hydroxy-6,13-trans-8,11-cis-eicosatetraenoic acid by activated human leukocytes and further transformed to a 5(6)-epoxytetraene. This epoxide or its equivalent could be enzymatically transformed to either LXA₄ (by the action of an epoxide hydrolase to yield a 5S.6R diol) or LXB_4 (by attack of the C-14 position with the generation of an 8-cis double bond). Further evidence for a 5(6)-epoxytetraene intermediate in the biosynthesis was obtained with 15S-hydroxy-5(6)-oxido-7,9,13-trans-11-ciseicosatetraenoic acid prepared by total chemical synthesis. This epoxide was rapidly and quantitatively converted to LXA_4 (in vitro) by a purified cytosolic epoxide hydrolase (Puustinen et al., 1986). It remains to be determined whether a similar enzyme is solely responsible for the formation of LXA_4 by human leukocytes. Others have also postulated the role of epoxytetraenes in the formation of LXA₄, LXB₄ and their isomers (Adams et al., 1985; Kühn et al., 1984) in model systems. In particular, Kühn et al. (1984), Fitzsimmons et al. (1985), and Adams et al. (1985) considered several possible biosynthetic schemes to generate lipoxins, which relied heavily upon theoretical knowledge of the action of LO's available at that time. One scheme involved an epoxide intermediate and another involved three consecutive oxygenations catalyzed by LO's. It is now clear from these studies as well as results obtained from our biosynthetic studies with intact human leukocytes that the generation of a 5(6)-epoxytetraene from 15-HETE is an enzymatic event (Serhan et al., 1985, 1986a,b). Fitzsimmons et al. (1985) proposed that, once formed, the 5(6)-epoxytetraene could undergo nonenzymatic hydrolysis to yield a mixture of products including 14S-8-trans-LXB₄, 8-trans-LXB₄, and a racemic mixture of both LXA₄ and its 6(S) isomer $(6S-LXA_4)$, but not LXB₄. This suggestion was based upon the results of an experiment in which synthetic 5(6)-epoxytetraene was added to leukocytes in suspension. However, it is not clear from these data whether the 5(6)epoxytetraene entered the cells or if it underwent hydrolysis in the extracellular medium before gaining access to cellular compartments. Moreover,

Serhan

the results of time course studies are not consistent with this proposal, namely, equal amounts of LXA_4 and 6S- LXA_4 would be expected, rather than the quantitatively higher amounts of LXA_4 that are observed with cells that have not undergone lysis (Serhan *et al.*, 1984a, 1986b, 1989).

Cell-Free Systems and Isolated Enzymes Which Generate Lipoxins and Related Compounds

The proposal that tetraene-containing eicosanoids, in particular LXA₄ and LXB₄, could be generated by several distinct biosynthetic routes (Serhan et al., 1984a,b) has now been explored in several model systems using both purified and partially purified enzymes (Table I). Initial studies by Kühn et al. (1984) in this area indicated that a purified LO obtained from reticulocytes could convert 5S,15S-DiHETE to trihydroxytetraenes. Since the generation of these compounds was blocked by inhibitors, heat denaturing of the enzyme, and by anaerobic conditions, it was proposed that the products were enzymatically generated by LO-type reactions. As stated above, two independent LO mechanisms could account for the formation of these products by the isolated lipoxygenase. One involves a 5(6)-epoxide, while the other implicates the formation of an intermediate that is generated by the action of a LO on either 5,15-DHPETE or its reduced form 5,15-DHETE (Kühn et al., 1984). This second route is considered a sequential triple lipoxygenation where a product of dioxygenation becomes a substrate for the enzymatic insertion of molecular oxygen as the third step. More recently, these investigators (Kühn et al., 1986, 1987) demonstrated that the isolated reticulocyte enzyme can convert 5,15-DHETE to LXB₄ by incorporation of molecular oxygen, thus illustrating the potential of this triple LO route with purified enzyme.

Ueda *et al.* (1987a) have shown that a 5-LO purified from porcine leukocytes can enzymatically generate a 5(6)-epoxytetraene with either 15-HPETE or 15-HETE. In contrast, studies using a purified 12-LO from porcine leukocytes indicate that LXB₄ can be generated by both the 14*R*-oxygenase activity as well as the LTA₄ synthase activity of this enzyme with 5,15-DiHPETE (Ueda *et al.*, 1987b). Thus, this enzyme can generate LXB₄ by both triple oxygenation and by the formation of a putative 14(15)-epoxytetraene. It should be noted, however, that, unlike the porcine leukocyte, human leukocytes do not possess a prominent 12-LO, and when 5,15-DiHPETE was added to intact human platelets, which contain active 12-LO, LXB₄ was not generated (Serhan *et al.*, 1986a). Nevertheless, results obtained with purified 12-LO from porcine leukocytes have offered another enzymatic route for LXB₄ production with intriguing mechanistic implications.

Generation of Lipoxins and Related Compounds by Cell-Free and Isolated Enzyme Systems	
lable I.	

Enzyme	Source	Substrate	Major enzymatic product	Reference
Lipoxygenase Lipoxygenase /12-Lipoxygenase	kavour reuculocytes Soybean Reticulocyte	5,15-DiffETE 5,15-DiffETE 15-HETE, arachidonic acid	I rihydroxytetraenes Trihydroxytetraenes Lipoxin B ₄	Kühn et al., 1984 Kühn et al., 1984 Kühn et al., 1986 Kühn at al. 1987
Jpoxygenase Lipoxygenase Jpoxygenase	Porcine leukocytes Porcine leukocytes Potato tubers	15-HPETE, 5,15-DiHPETE 15-HPETE, 5,15-DiHPETE 15-HPETE/C20:4	5(6)-Epoxytetraene Lipoxin B ₄ Lipoxin A ₄ /lipoxin B ₄	Ueda <i>et al.</i> , 1987a Ueda <i>et al.</i> , 1987a Ueda <i>et al.</i> , 1987b Ho and Wong, 1989
Lipoxygenase Lipoxygenase	Soybean Human platelets (100 000 ° sumernates)	Leukotriene A ₄ Leukotriene A ₄	5(6)-Epoxytetraene Lipoxin A_4	Serhan <i>et al.</i> , 1969 Serhan <i>et al.</i> , 1990 Serhan <i>et al.</i> , 1990
oxide hydrolase tosolic)	Human liver	5(6)-Epoxytetraene	Lipoxin A ₄	Puustinen et al., 1986

The 5-LO of potato tubers has also been shown to generate LXB₄, as well as a novel 6,7-dihydrolipoxin B₄, when incubated with 15-HPETE (Ho and Wong, 1989; Reddy *et al.*, 1989). In addition to utilizing hydroxyand hydroperoxy-containing compounds as substrates for dioxygenationtype reactions, recent results indicate that LO's can also utilize epoxidecontaining compounds as substrates to lipoxin precursors. Along these lines, the soybean 15-LO added to LTA₄ rapidly transforms this epoxide to a 5(6)-epoxytetraene (Serhan *et al.*, 1990), suggesting that 15-lipoxygenation of LTA₄ may serve as an additional route to lipoxin formation in various cells.

The role of initial oxygenation of C20:4 by 5-LO, followed by interactions with either the 12-LO or 15-LO, has been explored in studies with intact human platelets (Edenius *et al.*, 1988; Serhan *et al.*, 1990), rat mesangial cells (Garrick *et al.*, 1989), and neutrophils (Serhan and Sheppard, 1990). Recent results with human platelet-derived 100,000 g supernatants, which display 12-LO activity, show that the platelet 12-LO can transform LTA₄ to lipoxins (Serhan and Sheppard, 1990; Serhan *et al.*, 1990). This action of the human 12-LO with LTA₄ exemplifies its ω -6 oxygenase activity and provides an unexpected role for this enzyme in lipoxin biosynthesis. Once formed, the 5(6)-epoxytetraene could be a substrate for lipoxin production by several distinct mechanisms (Serhan *et al.*, 1986a,b). It is clear, at least *in vitro*, that synthetic epoxytetraenes [e.g., 5(6)-epoxytetraene and 14(15)-epoxytetraene] can undergo nonenzymatic hydrolysis to generate both LXA₄ and LXB₄, respectively, as well as some but not all of their isomers (Fitzsimmons *et al.*,

Fig. 2. Key switch points between leukotriene and lipoxin production. Arrows indicate reactions documented by investigations cited in Tables I and II. Together, they may represent potential sites or routes for formation of lipoxins by cell-cell interactions or within a given cell type, which possesses all the necessary enzymes.

1985; Leblanc *et al.*, 1987; Nicolaou *et al.*, 1989). However, further transformations of the epoxytetraenes by various cell types have not been examined in detail. Taken together, results obtained with isolated enzymes and cell-free systems (Table I) have illustrated the existence of multi-potential routes for lipoxin generation, some of which may prove to be utilized by specific cellular systems. These routes and their relationship to leukotriene biosynthesis are illustrated in Fig. 2. The existence of multiple pathways makes it essential to characterize the pathway of LX biosynthesis utilized in the particular cell systems under investigation.

Cellular Origins of Lipoxins: Role of Cell-Cell Interactions

Cell types from several species have now been shown to generate lipoxins from either endogenous and/or exogenous sources of C20:4 (Table II). The first reports of lipoxin formation from endogenous sources of either C20:4 or eicosapentaenoic acid were presented by Wong et al. (1986). Lam et al. (1987), utilizing an isolated PLA₂ isoenzyme added to porcine leukocytes, demonstrated the formation of LXB₄ and its isomers, while eosinophil-rich granulocyte suspensions from humans generate LXA₄, which correlated with the number of eosinophils present (Serhan et al., 1987b). The biosynthetic route for LXA₄ formation from endogenous sources could not be concluded from the results in this study because of the limited amounts of cells; that is, was LXA₄ produced exclusively from C20:4 released and processed within a single cell? Upon activation of eosinophil-enriched cell suspensions, suitable substrates may have been mobilized by one cell type and transformed to LXA₄ by another (Serhan *et al.*, 1987b). The 5(6)-epoxytetraene, LTA₄, or 15-HETE are each potential candidates and hence may shuttle between individual cells for further processing. Along these lines, we have previously documented that interactions between human platelets and neutrophils result in the transcellular metabolism of both lipoxygenase products and native platelet-derived arachidonic acid (Marcus et al., 1982). During the past several years, the role of cell-cell interactions in the biosynthesis of eicosanoids and other putative inflammatory mediators has captured considerable interest. Edenius et al. (1988) have recently reported that mixed plateletgranulocyte suspensions stimulated with the ionophore A23187 generate LXA₄, as well as four other tetraene-containing compounds, from endogenous sources. They also showed that LTA₄ is converted to LXA₄ by platelets and suggested that the reported 15-LO activity of platelets may be involved in this enzymatic conversion. Garrick et al. (1989) found that mesangial cells from rat kidney can also utilize LTA₄ to form lipoxins, providing additional

		×	
Cell type	Substrate	Stimulus	References
Juman leukocytes Juman leukocytes	15-HPETE 15-HPETE	± Ionophore A23187 Ionophore A23187	Serhan <i>et al.</i> , 1984a,b Fitzsimmons <i>et al.</i> , 1985
Human leukocytes	15-HETE	FMLP; ionophore A23187	Serhan et al., 1986a
Human eosinophil-rich granulocyte suspension	C20:4, endogenous C20:4	Ionophore A23187	Serhan et al., 1987b
Porcine leukocytes Bovine leukocytes	Endogenous C20:4 C20:4, 15-HPETE, 15-HETE,	PLA ₂ isoenzyme Ionophore A23187	Lam <i>et al.</i> , 1987 Walstra <i>et al.</i> , 1988
	D-MELE, D-MELE		
kat alveolar macrophages	15-HPETE	Ionophore A23187	Kim, 1988
kat basophilic leukemia cells	15-HPETE	PMA, FMLP, iononhore A73187	Ng et al., 1989
Teritor mostorettore colle		Torrethand A 3107	I among The summer I
Juman manucytomia cens Juman mentronhils	Cz0:4 Fudoœnous C20:4	Ionophore A23187	Lazarus anu zocca, 1900 Sarhan 1080
			D_{1}
ruman platelets	LIA_4	± tonopnore A2318/, stimulation	Edenius et al., 1988
Juman platelets	LTA_4	± Ionophore A23187, thromhin	Serhan et al., 1990
Rat kidney mesangial cells	LTA_{A}	None required	Garrick et al., 1989
Human cosinophils	15-HETE	Ionophore A23187	Steinhilber and Roth, 1989
Porcine leukocytes	15-HPEPE	± Ionophore A23187	Wong et al., 1986
Cell-cell interactions			Lam et al., 1987
Human granulocyte-eosinophil	Endogenous C20:4	Ionophore A23187	Serhan et al., 1987b
Human platelet-granulocyte Human neutrophil-platelet	Endogenous C20:4 Endogenous C20:4	Ionophore A23187 FMLP, thrombin	Edenius <i>et al.</i> , 1988 Serhan and Sheppard, 1990

Table II. Cells That Generate Lipoxins

114

evidence to support the hypothesis that cell-cell interactions play a pivotal role in lipoxin biosynthesis.

Although ionophore-stimulated cells can generate lipoxins without addition of exogenous substrate (Edenius *et al.*, 1988; Serhan, 1989; Serhan *et al.*, 1987b), it remained to be determined if receptor occupancy could lead to their formation. Recent results from this laboratory indicate that simultaneous activation of human neutrophils and platelets by receptor-mediated agonists (FMLP and thrombin) leads to formation of both LXA₄ and LXB₄ (Serhan and Sheppard, 1990). In these studies, LTA₄ was transformed to LXA₄ as well as the recently identified 7-*cis*-11-*trans*-LXA₄ (Nicolaou *et al.*, 1989) by cell-free 100,000 g supernatants of human platelets, which displayed 12-LO activity. Taken together, these results indicate that lipoxins can also be formed by initial oxygenation by the 5-LO followed by transcellular interest, since results with human neutrophils indicate that, when these cells utilize 15-HETE to generate lipoxins, an inverse relationship is observed between leukotriene and lipoxin generation (Serhan, 1989).

Canine mastocytoma cells in culture can generate lipoxins, suggesting that mast cells are also a source of lipoxins (Lazarus and Zocca, 1988). In nonhuman cell types, preliminary evidence has been obtained for triple lipoxygenation biosynthesis to generate lipoxins with intact bovine leukocytes (Walstra *et al.*, 1988). Unlike human neutrophils, which possess both 5- and 15-LO activities, bovine leukocytes also display 12-LO activity. As a result, bovine leukocytes can generate lipoxins by utilizing either C20:4, 15-HETE, 5,15-DHETE, 5-HPETE, or 5-HETE. Steinhilber and Roth (1989) isolated peptido-containing lipoxins from human eosinophils. These new additions to the lipoxin series appear to be generated via conjugation of a 5(6)-epoxytetraene intermediate. The biological role and significance of these new lipoxins is currently being explored.

Intra- and Intercellular Actions of Lipoxins

Since the lipoxins were found to be LO products, initial studies evaluating their biological actions focused on their comparative responses with respect to other LO products including leukotrienes. Results from these studies quickly revealed that the actions of lipoxin A_4 and lipoxin B_4 are distinct from those of other eicosanoids (Tables III–V). In each system, including results from both *in vivo* and *in vitro* evaluations, the responses evoked by either LXA₄ or LXB₄ have proven to be stereospecific, and in some systems responses are observed in the nanomolar concentration range. In general, the magnitude and extent of the responses induced by the lipoxins, like other

Bioassay			
system	Compounds	Response	Reference
Microcirculation: hamster cheek pouch	LXA ₄	Arteriolar dilation without vascular permeability or leukocyte adherence	Dahlén <i>et al.</i> , 1987
Systemic and renal hemodynamics in rats	LXA_4	Selective fall in afferent arteriolar resistance, glomerular hyperperfusion, hypertension and hyperfiltration (arteriolar dilation)	Badr <i>et al.</i> , 1987
Renal hemodynamics	LXA4	Antagonizes leukotriene D ₄ -induced fall in glomerular filtration rate but not renal plasma flow (counterregulatory actions)	Badr <i>et al.</i> , 1989
Cerebral arterioles of newborn pigs	LXA_4 and LXB_4	Stimulate dilation of cerebral arterioles not prostanoid mediated	Busija <i>et al.</i> , 1989
Mesenteric circulation in conscious rats	LXA_4 and LXB_4	I.V. administration constricts mesenteric vessels	Feuerstein and Siren, 1988
Hamster cheek pouch	LXA_4	Inhibits leukotriene B_4 -induced inflammation; LXA ₄ blocks plasma leakage and leukocyte migration	Hedqvist <i>et al.</i> , 1989
Mouse hematopoietic stem cells	LXB ₄ , but not LXA ₄	Radioprotective actions without diarrhea or ataxia	Walden, 1988

Table III. Biological Activities of Lipoxins: in vivo Models

eicosanoids, appear to be both species- and cell type-dependent (Tables III and IV). In several *in vivo* models (Table III), LXA₄ and LXB₄ each stimulate changes in microcirculation (Badr *et al.*, 1987, 1989; Busija *et al.*, 1989; Dahlén *et al.*, 1987; Feuerstein and Siren, 1988; Hedqvist *et al.*, 1989). At submicromolar concentrations, LXA₄ induces rapid arteriolar dilation in both the hamster cheek pouch and renal hemodynamics of the rat (Badr *et al.*, 1987; Dahlén *et al.*, 1987). LXA₄ has recently been found to antagonize LTD₄-induced vasoconstriction (*in vivo*) and block the binding of LTD₄ to its receptors on mesangial cells (in culture). These cells are responsible, in part, for regulating glomerular hemodynamics. Thus, these results suggest that LXA₄ may regulate the actions of vasoconstrictor leukotrienes *in vivo* (Badr *et al.*, 1989). LXA₄ has also been shown to block LTB₄-induced inflammation in the hamster cheek pouch (Hedqvist *et al.*, 1989). In this *in vivo* system, LXA₄ inhibited both LTB₄-induced plasma leakage and leukocyte migration, which are important components in inflammatory responses.

The actions of lipoxins have now been evaluated by several groups utilizing isolated organ bath systems (Table IV). Unlike the leukotrienes,

Bioassay system	Compounds	Response	Reference
Guinea pig lung strips	Lipoxin A ₄	Contracts with slow onset	Serhan <i>et al.</i> , 1986b
Guinea pig lung strips	Lipoxin A_4	Cyclooxygenase-independent contraction	Dahlén <i>et al.</i> , 1987
Guinea pig lung strips	LXA ₄ geometric isomers	Structure-function relationship with smooth muscle contraction	Dahlén <i>et al.</i> , 1989
Guinea pig lung strips	Lipoxin A ₄ but not LXB ₄	Contracts parenchymal strips, and not tracheal spirals; LXA_4 contractions were not blocked by a 5-LO inhibitor	Jacques <i>et al</i> ., 1988
Guinea pig lung parenchyma and ileum smooth muscle	LXA ₄	Contracts lung strips but not ileum smooth muscles in cascade superfusion	Cristol and Sirois, 1988
Rat tail artery	LXA ₄	Contracts	Ng et al., 1989
Guinea pig, rabbits, and rat lung strips	LXA ₄ and LXB ₄	Bronchoconstrictors and exert endothelium-dependent vasorelaxation	Lefer <i>et al.</i> , 1988
Guinea pig lung	LXA ₄	Stimulates thromboxane production	Wikstrom <i>et al.</i> , 1989

Table IV. Biological Activities of Lipoxins: Isolated Organ Paths

LXA₄ contracts guinea pig lung strips but not ileum smooth muscle preparations, which suggests a degree of organ specificity at the receptor level as well (Cristol and Sirois, 1988; Dahlén *et al.*, 1987, 1989; Jacques *et al.*, 1988; Serhan *et al.*, 1986b). Contractions induced by LXA₄ are characteristically slow in onset and are not blocked by either cyclooxygenase or LO inhibitors with lung strips (Dahlén *et al.*, 1987), although LXA₄ can stimulate thromboxane production in these preparations (Wikström *et al.*, 1989). In addition to bronchoconstrictor activities, both LXA₄ and LXB₄ can stimulate endothelium-dependent vasorelaxation (Lefer *et al.*, 1988), which may be mediated in part or related to their ability to rapidly stimulate prostacyclin formation and release from cultured human endothelial cells (Brezinski *et al.*, 1989).

Lipoxins also display unique actions on specific cell types *in vitro* (Table V). For example, LXA₄ elicits a selective profile of action on human neutrophils which is unlike that of leukotriene B₄ (Lee *et al.*, 1989a,b; Luscinskas *et al.*, 1989; Nigam *et al.*, 1990; Palmblad *et al.*, 1987; Serhan and Reardon, 1989; Serhan *et al.*, 1984b). In addition to inducing a modest chemotactic response (Palmblad *et al.*, 1987), LXA₄ is also reported to block both LTB₄- and FMLP-induced responses (i.e., IP₃ generation and Ca²⁺

Bioassay system	Compounds	Response	Reference
Isolated cell systems Human neutrophils	$LXA_4 > LXB_4$	Chemotaxis without aggregation	Palmblad <i>et al.</i> , 1987; Serhan <i>et al.</i> , 1984b
Human neutrophils	LXA ₄	Inhibits leukotriene and FMLP-induced chemotactic responses, Ca ²⁺ mobilization and IP ₃ generation	Lee, 1989; Lee <i>et al.</i> , 1989a,b
Human neutrophils	LXA_4 and LXB_4	Do not inhibit FMLP- or A23187-induced superoxide anion generation	Serhan and Reardon, 1989
Human neutrophils	LXA_4 and LXB_4	Stimulate lipid remodeling and release of C20:4 without LO activation, or blocking LTB ₄ binding	Nigam <i>et al.</i> , 1990
Human neutrophils	5(6)-Epoxytetraene	Stimulates mobilization of intracellular Ca ²⁺	Luscinskas et al., 1989
Human endothelial cells	LXA_4 and LXB_4	Stimulates prostacyclin generation and release	Brezinski et al., 1989
Rat mesangial cells	LXA ₄	Inhibits LTD_4 -induced IP_3 generation and LTD_4 binding	Badr <i>et al.</i> , 1989
Human mononuclear cells	LXB ₄	Stimulates colony formation in diffusion chambers	Popov <i>et al.</i> , 1989
Human natural killer cells	LXA_4 and LXB_4	Blocks cytoxicity without altering target-cell binding	Ramdstedt <i>et al.</i> , 1985, 1987
Isolated enzymes Protein kinase C (PKC) human placental-derived	LXA ₄	Activates PKC in the presence of Ca^{2+} and selects substrate specificity	Hansson <i>et al.</i> , 1986
PKC γ-subspecies bovine cerebellum	LXA_4	Selective activator	Shearman et al., 1989

Table V. Biological Activities of Lipoxins: in vitro Systems

mobilization) with these cells (Lee *et al.*, 1989a,b). Neither compound, however, can inhibit FMLP- or ionophore-stimulated superoxide anion generation (Serhan and Reardon, 1989). We have recently found that both LXA_4 and LXB_4 selectively stimulate lipid remodeling with neutrophils and release C20:4 without initiating LO activity, extensive Ca²⁺ mobilization, or blocking LTB₄ binding to these cells (Nigam *et al.*, 1990). These results

suggest that the lipoxins activate a unique pathway in the stimulusresponse coupling sequence in human PMN. Although neither compound elicits Ca^{2+} mobilization alone with neutrophils, one of their precursors, 5(6)-epoxytetraene, can mobilize intracellular Ca^{2+} (Luscinskas *et al.*, 1989), which may play a role in transcellular metabolism of epoxides. LXA₄ and LXB₄ also display selective actions with NK cells and block cytotoxicity (Ramstedt *et al.*, 1985, 1987). Results indicate that lipoxins also induce some long-term responses. LXB₄, for example, stimulate colony formation with human mononuclear cells (Popov *et al.*, 1989) and this lipoxin, but not LXA₄, possesses a selective radioprotective effect with hematopoietic stem cells (Walden, 1988).

In addition to its actions on various tissues and hence potential extracellular roles, LXA₄ may also have an intracellular role within its cell type of origin before its release to the extracellular milieu (Table V). Since arachidonic acid is released and oxygenated by a wide range of cell types during stimulusresponse coupling, we have been interested in determining whether eicosanoids themselves can serve as intracellular messengers (i.e., modulate the actions of enzyme systems within their cells of origin prior to their membrane transport). We therefore examined the action of several classes of LO products and native fatty acids on the activities of isolated protein kinase C as a model system, given the pivotal role of this enzyme and its isoforms in cell activation (Hansson et al., 1986). LXA₄ activated the kinase and proved to be more potent than both diacylglyceride (a proposed intracellular signal in the activation of protein kinase C) and native arachidonic acid. Other oxygenated derivatives of arachidonic acid, including leukotriene B_4 (LTB₄), were without a direct effect in this enzyme. In this isolated enzyme system, LXB_4 was found to be approximately 10 times less potent than LXA_4 while both 8-trans-LXB₄ and 14S-LXB₄ were essentially inactive. Results of these experiments also showed that the substrate specificity of this kinase can be modulated, depending upon the stereochemistry of the activator. These results suggest that lipoxygenase products, in particular LXA₄, may serve an intracellular role. Recent evidence from Shearman et al. (1989) has extended these observations by providing evidence indicating that the action of LXA_4 is specific for the γ -subspecies of PKC, which is abundant in both brain and spinal cord.

Since LXA_4 is found in the bronchoalveolar lavage of patients with pulmonary diseases (Lee *et al.*, 1990), the bioactions of this compound in model systems (reviewed here) may provide some insights into the role it may play during various stages of pathogenesis in pulmonary tissues.

To conclude, lipoxins are generated by several biosynthetic routes, which can include lipoxygenase as well as cell-cell interactions. LXA_4 and LXB_4 each carry selective biological actions demonstrated in both *in vivo* and *in vitro* systems. Results from several laboratories now provide a body of evidence to support the notion that lipoxins may be involved in regulating cellular responses of interest in host defense, vascular tone, and inflammation.

Acknowledgments

The author thanks Mary Halm Small for skillful preparation of this manuscript and my collaborators in this area (see references). The author's laboratory is supported in part by NIH grants Nos. AI26714 and GM38765. CNS is a recipient of the J. V. Satterfield Arthritis Investigator Award from the National Arthritis Foundation and is a Pew Scholar in the Biomedical Sciences.

References

- Adams, J., Fitzsimmons, B. J., Girard, Y., Leblanc, Y., Evans, J. F., and Rokach, J. (1985). J. Am. Chem. Soc. 107, 464–469 and supplemental material.
- Badr, K. F., Serhan, C. N., Nicolaou, K. C., and Samuelsson, B. (1987). Biochem. Biophys. Res. Commun. 145, 408-414.
- Badr, K. F., DeBoer, D. K., Schwartzberg, M., and Serhan, C. N. (1989). Proc. Natl. Acad. Sci. USA 86, 3438–3442.
- Borgeat, P., Fruteau de Laclos, B., and Maclouf, J. (1983). Biochem. Pharm. 32, 381-387.
- Brezinski, M. E., Gimbrone, M. A., Jr., Nicolaou, K. C., and Serhan, C. N. (1989). FEBS Lett. 245, 167–172.
- Busija, D. W., Armstead, W., Leffler, C. W., and Mirro, R. (1989). Am. J. Physiol. 468-471.
- Corey, E. J., and Mehrotra, M. M. (1986). Tetrahedron Lett. 43, 5173-5176.
- Cristol, J.-P., and Sirois, P. (1988). Res. Commun. Chem. Pathol. Pharmacol. 59, 423-426.
- Dahlén, S.-E., Raud, J., Serhan, C. N., Björk, J., and Samuelsson, B. (1987). Acta Physiol. Scand. 130, 643-647.
- Dahlén, S.-E., Veale, C. A., Webber, S. E., Marron, B. E., Nicolaou, K. C., and Serhan, C. N. (1989). Agents Actions 26, 93–95.
- Edenius, C., Haeggström, J., and Lindgren, J. Å. (1988). Biochem. Biophys. Res. Commun. 157, 801-807.
- Feuerstein, G., and Siren, A.-L. (1988). FEBS Lett. 232, 51-55.
- Fitzsimmons, B. J., Adams, J., Evans, J. F., Leblanc, Y., and Rokach, J. (1985). J. Biol. Chem. 260, 13008–13012.
- Garrick, R., Shen, S.-Y., Ogunc, S., and Wong, P. Y.-K. (1989). Biochem. Biophys. Res. Commun. 162, 626–633.
- Hamberg, M., Hedqvist, P., and Radegen, K. (1980). Acta Physiol. Scand. 110, 219-223.
- Hansson, A., Serhan, C. N., Haeggström, J., Ingelman-Sundberg, M., and Samuelsson, B. (1986). Biochem. Biophys. Res. Commun. 134, 1215–1222.
- Hedqvist, P., Raud, J., Palmertz, U., Haeggström, J., Nicolaou, K. C., and Dahlén, S. E. (1989). Acta Physiol. Scand. 137, 571-572.
- Ho, H.-Y., and Wong, P. Y.-K. (1989). In Advances in Prostaglandin, Thromboxane, and Leukotriene Research (Samuelsson, B., Wong, P. Y.-K., and Sun, F. F., eds.), Vol. 19, Raven Press, New York, pp. 137–140.
- Jacques, C. A. J., Spur, B. W., Crea, A. E. G., and Lee, T. H. (1988). Br. J. Pharmacol. 95, 562–568.
- Kim, S. J. (1988). Biochem. Biophys. Res. Commun. 150, 870-876.

- Kühn, H., Wiesner, R., and Stender, H. (1984). FEBS Lett. 177, 255-259.
- Kühn, H., Wiesner, R., Alder, L., Schewe, T., and Stender, H. (1986). FEBS Lett. 208, 248-252.
- Kühn, H., Wiesner, R., Alder, L., Fitzsimmons, B. J., Rokach, J., and Brash, A. R. (1987). Eur. J. Biochem. 169, 593-601.
- Lam, B. K., Serhan, C. N., Samuelsson, B., and Wong, P. Y.-K. (1987). Biochem. Biophys. Res. Commun. 144, 123–131.
- Lazarus, S. C., and Zocca, E. (1988). FASEB J. 2, A409.
- Leblanc, Y., Fitzsimmons, B. J., Rokach, J., Ueda, N., and Yamamoto, S. (1987). Tetrahedron Lett. 28, 3449–3452.
- Lee, T. H. (1989). Allergologie, Jahrgang 12, Kongressausgabe 89-90.
- Lee, T. H., Horton, C. E., Kyan-Aung, U., Haskard, D., Crea, A. E. G., and Spur, B. W. (1989a). Clin. Sci. 77, 195–203.
- Lee, T. H., Grandordy, B., Horton, C. E., Crea, A. E. G., and Spur, B. W. (1989b). FASEB J. 3, A1277.
- Lee, T. H., Crea, A. E. G., Gant, V., Spur, B. W., Marron, B. E., Nicolaou, K. C., Reardon, E., Brezinski, M., and Serhan, C. N. (1990). Am. J. Respir. Res. 141, 1453–1458.
- Lefer, A. M., Stahl, G. L., Lefer, D. J., Brezinski, M. E., Nicolaou, K. C., Veale, C. A., Abe, Y., and Smith, J. B. (1988). Proc. Natl. Acad. Sci. USA 85, 8340–8344.
- Luscinskas, F. W., Nicolaou, K. C., Webber, S. E., Veale, C. A., Gimbrone, M. A., Jr., and Serhan, C. N. (1990). Biochem. Pharmacol. 39, 355–365.
- Marcus, A. J., Brockman, M. J., Safier, L. B., Ullman, H. L., Islam, N., Serhan, C. N., Rutherford, L. E., Korchak, H. M., and Weissmann, G. (1982). Biochem. Biophys. Res. Commun. 109, 130–135.
- Murray, J. J., Tonnel, A. B., Brash, A. R., Roberts, L. J., II, Gosset, P., Workman, R., Capron, A., and Oates, J. A. (1986). N. Engl. J. Med. 315, 800–805.
- Needleman, P., Turk, J., Jakschik, B. A., Morrison, A. R., and Lefkowith, J. B. (1986). Annu. Rev. Biochem. 55, 69–102.
- Ng, C. F., Lam, B. K., Pritchard, K. A., Jr., Stemerman, M. B., Hejny, P., and Wong, P. Y.-K. (1989). *Biochim. Biophys. Acta*, in press.
- Nicolaou, K. C., Marron, B. E., Veale, C. A., Webber, S. E., Dahlén, S. E., Samuelsson, B., and Serhan, C. N. (1989). Biochim. Biophys. Acta 1003, 44–53.
- Nigam, S., Fiore, S., Luscinskas, F. W., and Serhan, C. N., (1990). J. Cell Physiol. 143, 512-523.
- Palmblad, J., Gyllenhammar, H., Ringertz, B., Serhan, C. N., Samuelsson, B., and Nicolaou, K. C. (1987). Biochem. Biophys. Res. Commun. 145, 168–175.
- Popov, G. K., Nekrasov, A. S., Khshivo, A. L., Pochinskii, A. G., Lankin, V. Z., and Vikhert, A. M. (1989). Byull. Eksp. Biol. Med. 107, 80–83.
- Puustinen, T., Webber, S. E., Nicolaou, K. C., Haeggström, J., Serhan, C. N., and Samuelsson, B. (1986). FEBS Lett. 207, 127–132.
- Ramstedt, U., Ng, J., Wigzell, H., Serhan, C. N., and Samuelsson, B. (1985). J. Immunol. 135, 3434–3438.
- Ramstedt, U., Serhan, C. N., Nicolaou, K. C., Webber, S. E., Wigzell, H., and Samuelsson, B. (1987). J. Immunol. 138, 266–270.
- Reddy, C. C., Whelan, J., Rao, M. K., and Reddanna, P. (1989). In Advances in Prostaglandin, Thromboxane, and Leukotriene Research (Samuelsson, B., Wong, P. Y.-K., and Sun, F. F., eds.), Vol. 19, Raven Press, New York, pp. 132–136.
- Samuelsson, B. (1983). Science 220, 568-575.
- Samuelsson, B., and Serhan, C. N. (1987). In Prostaglandins in Cancer Research (Garaci, E., Paoletti, R., and Santoro, M. G., eds.), Springer-Verlag, Berlin and Heidelberg, pp. 3–11. Serhan, C. N. (1989). Biochim. Biophys. Acta 1004, 158–168.
- Serhan, C. N., and Reardon, E. (1989). Free Radical Res. Commun. 7, 341-345.
- Serhan, C. N., and Sheppard, K.-A. (1990). J. Clin. Invest. 85, 772-780.
- Serhan, C. N., Hamberg, M., and Samuelsson, B. (1984a). Biochem. Biophys. Res. Commun. 118, 943–949.
- Serhan, C. N., Hamberg, M., and Samuelsson, B. (1984b). Proc. Natl. Acad. Sci. USA 81, 5335-5339.

- Serhan, C. N., Lundberg, U., Weissmann, G., and Samuelsson, B. (1984c). Prostaglandins 27, 563–581.
- Serhan, C. N., Fahlstadius, P., Dahlén, S.-E., Hamberg, M., and Samuelsson, B. (1985). In Advances in Prostaglandin, Thromboxane, and Leukotriene Research (Hayaishi, O., and Yamamoto, S., eds.), Vol. 15, Raven Press, New York, pp. 163–166.
- Serhan, C. N., Hamberg, M., Samuelsson, B., Morris, J., and Wishka, D. G. (1986a). Proc. Natl. Acad. Sci. USA 83, 1983–1987.
- Serhan, C. N., Nicolaou, K. C., Webber, S. E., Veale, C. A., Dahlén, S.-E., Puustinen, T. J., and Samuelsson, B. (1986b). J. Biol. Chem. 261, 16340–16345.
- Serhan, C. N., Wong, P. Y.-K., and Samuelsson, B. (1987a). Prostaglandins 34, 201-204.
- Serhan, C. N., Hirsch, U., Palmblad, J., and Samuelsson, B. (1987b). FEBS Lett. 217, 242-246.
- Serhan, C. N., Sheppard, K.-A., and Fiore, S. (1990). Advances in Prostaglandin, Thromboxane, and Leukotriene Research, Vol. 20, Raven Press, New York, pp. 54-62.
- Shearman, M. S., Naor, Z., Sekiguchi, K., Kishimoto, A., and Nishizuka, Y. (1989). FEBS Lett. 243, 177–182.
- Steinhilber, D., and Roth, H. J. (1989). FEBS Lett. 255, 143-148.
- Ueda, N., Yamamoto, S., Fitzsimmons, B. J., and Rokach, J. (1987a). Biochem. Biophys. Res. Commun. 144, 996–1002.
- Ueda, N., Yokoyama, C., Yammoto, S., Fitzsimmons, B. J., Rokach, J., Oates, J. A., and Brash, A. R. (1987b). Biochem. Biophys. Res. Commun. 149, 1063–1069.
- Walden, T. L., Jr. (1988). J. Radiat. Res. 29, 255-260.
- Walstra, P., Verhagen, J., Vermeer, M. A., Klerks, J. P. M., Veldink, G. A., and Vliegenthart, J. F. G. (1988). FEBS Lett. 228, 167–171.
- Wikström, E., Westlund, P., Nicolaou, K. C., and Dahlén, S.-E. (1989). Agents Actions 26, 90-92.
- Wong, P. Y.-K., Spur, B., Hirai, A., Yoshida, Tamura, Y., and Lam, B. K. (1986). Fed. Proc. 45, 927A.